大师兄

18 | 理论四:接口隔离原则有哪三种应用?原则中的“接口”该如何理解?

上几节课中,我们学习了SOLID原则中的单一职责原则、开闭原则和里式替换原则,今天我们学习第四个原则,接口隔离原则。它对应SOLID中的英文字母“I”。对于这个原则,最关键就是理解其中“接口”的含义。那针对“接口”,不同的理解方式,对应在原则上也有不同的解读方式。除此之外,接口隔离原则跟我们之前讲到的单一职责原则还有点儿类似,所以今天我也会具体讲一下它们之间的区别和联系。

话不多说,现在就让我们正式开始今天的学习吧!

如何理解“接口隔离原则”?

接口隔离原则的英文翻译是“ Interface Segregation Principle”,缩写为ISP。Robert Martin在SOLID原则中是这样定义它的:“Clients should not be forced to depend upon interfaces that they do not use。”直译成中文的话就是:客户端不应该被强迫依赖它不需要的接口。其中的“客户端”,可以理解为接口的调用者或者使用者。

实际上,“接口”这个名词可以用在很多场合中。生活中我们可以用它来指插座接口等。在软件开发中,我们既可以把它看作一组抽象的约定,也可以具体指系统与系统之间的API接口,还可以特指面向对象编程语言中的接口等。

前面我提到,理解接口隔离原则的关键,就是理解其中的“接口”二字。在这条原则中,我们可以把“接口”理解为下面三种东西:

  • 一组API接口集合
  • 单个API接口或函数
  • OOP中的接口概念

接下来,我就按照这三种理解方式来详细讲一下,在不同的场景下,这条原则具体是如何解读和应用的。

把“接口”理解为一组API接口集合

我们还是结合一个例子来讲解。微服务用户系统提供了一组跟用户相关的API给其他系统使用,比如:注册、登录、获取用户信息等。具体代码如下所示:

public interface UserService {
boolean register(String cellphone, String password);
boolean login(String cellphone, String password);
UserInfo getUserInfoById(long id);
UserInfo getUserInfoByCellphone(String cellphone);
}
public class UserServiceImpl implements UserService {
//...
}

现在,我们的后台管理系统要实现删除用户的功能,希望用户系统提供一个删除用户的接口。这个时候我们该如何来做呢?你可能会说,这不是很简单吗,我只需要在UserService中新添加一个deleteUserByCellphone()或deleteUserById()接口就可以了。这个方法可以解决问题,但是也隐藏了一些安全隐患。

删除用户是一个非常慎重的操作,我们只希望通过后台管理系统来执行,所以这个接口只限于给后台管理系统使用。如果我们把它放到UserService中,那所有使用到UserService的系统,都可以调用这个接口。不加限制地被其他业务系统调用,就有可能导致误删用户。

当然,最好的解决方案是从架构设计的层面,通过接口鉴权的方式来限制接口的调用。不过,如果暂时没有鉴权框架来支持,我们还可以从代码设计的层面,尽量避免接口被误用。我们参照接口隔离原则,调用者不应该强迫依赖它不需要的接口,将删除接口单独放到另外一个接口RestrictedUserService中,然后将RestrictedUserService只打包提供给后台管理系统来使用。具体的代码实现如下所示:

public interface UserService {
boolean register(String cellphone, String password);
boolean login(String cellphone, String password);
UserInfo getUserInfoById(long id);
UserInfo getUserInfoByCellphone(String cellphone);
}
public interface RestrictedUserService {
boolean deleteUserByCellphone(String cellphone);
boolean deleteUserById(long id);
}
public class UserServiceImpl implements UserService, RestrictedUserService {
// ...省略实现代码...
}

在刚刚的这个例子中,我们把接口隔离原则中的接口,理解为一组接口集合,它可以是某个微服务的接口,也可以是某个类库的接口等等。在设计微服务或者类库接口的时候,如果部分接口只被部分调用者使用,那我们就需要将这部分接口隔离出来,单独给对应的调用者使用,而不是强迫其他调用者也依赖这部分不会被用到的接口。

把“接口”理解为单个API接口或函数

现在我们再换一种理解方式,把接口理解为单个接口或函数(以下为了方便讲解,我都简称为“函数”)。那接口隔离原则就可以理解为:函数的设计要功能单一,不要将多个不同的功能逻辑在一个函数中实现。接下来,我们还是通过一个例子来解释一下。

public class Statistics {
private Long max;
private Long min;
private Long average;
private Long sum;
private Long percentile99;
private Long percentile999;
//...省略constructor/getter/setter等方法...
}
public Statistics count(Collection<Long> dataSet) {
Statistics statistics = new Statistics();
//...省略计算逻辑...
return statistics;
}

在上面的代码中,count()函数的功能不够单一,包含很多不同的统计功能,比如,求最大值、最小值、平均值等等。按照接口隔离原则,我们应该把count()函数拆成几个更小粒度的函数,每个函数负责一个独立的统计功能。拆分之后的代码如下所示:

public Long max(Collection<Long> dataSet) { //... }
public Long min(Collection<Long> dataSet) { //... }
public Long average(Colletion<Long> dataSet) { //... }
// ...省略其他统计函数...

不过,你可能会说,在某种意义上讲,count()函数也不能算是职责不够单一,毕竟它做的事情只跟统计相关。我们在讲单一职责原则的时候,也提到过类似的问题。实际上,判定功能是否单一,除了很强的主观性,还需要结合具体的场景。

如果在项目中,对每个统计需求,Statistics定义的那几个统计信息都有涉及,那count()函数的设计就是合理的。相反,如果每个统计需求只涉及Statistics罗列的统计信息中一部分,比如,有的只需要用到max、min、average这三类统计信息,有的只需要用到average、sum。而count()函数每次都会把所有的统计信息计算一遍,就会做很多无用功,势必影响代码的性能,特别是在需要统计的数据量很大的时候。所以,在这个应用场景下,count()函数的设计就有点不合理了,我们应该按照第二种设计思路,将其拆分成粒度更细的多个统计函数。

不过,你应该已经发现,接口隔离原则跟单一职责原则有点类似,不过稍微还是有点区别。单一职责原则针对的是模块、类、接口的设计。而接口隔离原则相对于单一职责原则,一方面它更侧重于接口的设计,另一方面它的思考的角度不同。它提供了一种判断接口是否职责单一的标准:通过调用者如何使用接口来间接地判定。如果调用者只使用部分接口或接口的部分功能,那接口的设计就不够职责单一。

把“接口”理解为OOP中的接口概念

除了刚讲过的两种理解方式,我们还可以把“接口”理解为OOP中的接口概念,比如Java中的interface。我还是通过一个例子来给你解释。

假设我们的项目中用到了三个外部系统:Redis、MySQL、Kafka。每个系统都对应一系列配置信息,比如地址、端口、访问超时时间等。为了在内存中存储这些配置信息,供项目中的其他模块来使用,我们分别设计实现了三个Configuration类:RedisConfig、MysqlConfig、KafkaConfig。具体的代码实现如下所示。注意,这里我只给出了RedisConfig的代码实现,另外两个都是类似的,我这里就不贴了。

public class RedisConfig {
private ConfigSource configSource; //配置中心(比如zookeeper)
private String address;
private int timeout;
private int maxTotal;
//省略其他配置: maxWaitMillis,maxIdle,minIdle...
public RedisConfig(ConfigSource configSource) {
this.configSource = configSource;
}
public String getAddress() {
return this.address;
}
//...省略其他get()、init()方法...
public void update() {
//从configSource加载配置到address/timeout/maxTotal...
}
}
public class KafkaConfig { //...省略... }
public class MysqlConfig { //...省略... }

现在,我们有一个新的功能需求,希望支持Redis和Kafka配置信息的热更新。所谓“热更新(hot update)”就是,如果在配置中心中更改了配置信息,我们希望在不用重启系统的情况下,能将最新的配置信息加载到内存中(也就是RedisConfig、KafkaConfig类中)。但是,因为某些原因,我们并不希望对MySQL的配置信息进行热更新。

为了实现这样一个功能需求,我们设计实现了一个ScheduledUpdater类,以固定时间频率(periodInSeconds)来调用RedisConfig、KafkaConfig的update()方法更新配置信息。具体的代码实现如下所示:

public interface Updater {
void update();
}
public class RedisConfig implemets Updater {
//...省略其他属性和方法...
@Override
public void update() { //... }
}
public class KafkaConfig implements Updater {
//...省略其他属性和方法...
@Override
public void update() { //... }
}
public class MysqlConfig { //...省略其他属性和方法... }
public class ScheduledUpdater {
private final ScheduledExecutorService executor = Executors.newSingleThreadScheduledExecutor();;
private long initialDelayInSeconds;
private long periodInSeconds;
private Updater updater;
public ScheduleUpdater(Updater updater, long initialDelayInSeconds, long periodInSeconds) {
this.updater = updater;
this.initialDelayInSeconds = initialDelayInSeconds;
this.periodInSeconds = periodInSeconds;
}
public void run() {
executor.scheduleAtFixedRate(new Runnable() {
@Override
public void run() {
updater.update();
}
}, this.initialDelayInSeconds, this.periodInSeconds, TimeUnit.SECONDS);
}
}
public class Application {
ConfigSource configSource = new ZookeeperConfigSource(/*省略参数*/);
public static final RedisConfig redisConfig = new RedisConfig(configSource);
public static final KafkaConfig kafkaConfig = new KakfaConfig(configSource);
public static final MySqlConfig mysqlConfig = new MysqlConfig(configSource);
public static void main(String[] args) {
ScheduledUpdater redisConfigUpdater = new ScheduledUpdater(redisConfig, 300, 300);
redisConfigUpdater.run();
ScheduledUpdater kafkaConfigUpdater = new ScheduledUpdater(kafkaConfig, 60, 60);
kafkaConfigUpdater.run();
}
}

刚刚的热更新的需求我们已经搞定了。现在,我们又有了一个新的监控功能需求。通过命令行来查看Zookeeper中的配置信息是比较麻烦的。所以,我们希望能有一种更加方便的配置信息查看方式。

我们可以在项目中开发一个内嵌的SimpleHttpServer,输出项目的配置信息到一个固定的HTTP地址,比如:http://127.0.0.1:2389/config 。我们只需要在浏览器中输入这个地址,就可以显示出系统的配置信息。不过,出于某些原因,我们只想暴露MySQL和Redis的配置信息,不想暴露Kafka的配置信息。

为了实现这样一个功能,我们还需要对上面的代码做进一步改造。改造之后的代码如下所示:

public interface Updater {
void update();
}
public interface Viewer {
String outputInPlainText();
Map<String, String> output();
}
public class RedisConfig implemets Updater, Viewer {
//...省略其他属性和方法...
@Override
public void update() { //... }
@Override
public String outputInPlainText() { //... }
@Override
public Map<String, String> output() { //...}
}
public class KafkaConfig implements Updater {
//...省略其他属性和方法...
@Override
public void update() { //... }
}
public class MysqlConfig implements Viewer {
//...省略其他属性和方法...
@Override
public String outputInPlainText() { //... }
@Override
public Map<String, String> output() { //...}
}
public class SimpleHttpServer {
private String host;
private int port;
private Map<String, List<Viewer>> viewers = new HashMap<>();
public SimpleHttpServer(String host, int port) {//...}
public void addViewers(String urlDirectory, Viewer viewer) {
if (!viewers.containsKey(urlDirectory)) {
viewers.put(urlDirectory, new ArrayList<Viewer>());
}
this.viewers.get(urlDirectory).add(viewer);
}
public void run() { //... }
}
public class Application {
ConfigSource configSource = new ZookeeperConfigSource();
public static final RedisConfig redisConfig = new RedisConfig(configSource);
public static final KafkaConfig kafkaConfig = new KakfaConfig(configSource);
public static final MySqlConfig mysqlConfig = new MySqlConfig(configSource);
public static void main(String[] args) {
ScheduledUpdater redisConfigUpdater =
new ScheduledUpdater(redisConfig, 300, 300);
redisConfigUpdater.run();
ScheduledUpdater kafkaConfigUpdater =
new ScheduledUpdater(kafkaConfig, 60, 60);
redisConfigUpdater.run();
SimpleHttpServer simpleHttpServer = new SimpleHttpServer(“127.0.0.1”, 2389);
simpleHttpServer.addViewer("/config", redisConfig);
simpleHttpServer.addViewer("/config", mysqlConfig);
simpleHttpServer.run();
}
}

至此,热更新和监控的需求我们就都实现了。我们来回顾一下这个例子的设计思想。

我们设计了两个功能非常单一的接口:Updater和Viewer。ScheduledUpdater只依赖Updater这个跟热更新相关的接口,不需要被强迫去依赖不需要的Viewer接口,满足接口隔离原则。同理,SimpleHttpServer只依赖跟查看信息相关的Viewer接口,不依赖不需要的Updater接口,也满足接口隔离原则。

你可能会说,如果我们不遵守接口隔离原则,不设计Updater和Viewer两个小接口,而是设计一个大而全的Config接口,让RedisConfig、KafkaConfig、MysqlConfig都实现这个Config接口,并且将原来传递给ScheduledUpdater的Updater和传递给SimpleHttpServer的Viewer,都替换为Config,那会有什么问题呢?我们先来看一下,按照这个思路来实现的代码是什么样的。

public interface Config {
void update();
String outputInPlainText();
Map<String, String> output();
}
public class RedisConfig implements Config {
//...需要实现Config的三个接口update/outputIn.../output
}
public class KafkaConfig implements Config {
//...需要实现Config的三个接口update/outputIn.../output
}
public class MysqlConfig implements Config {
//...需要实现Config的三个接口update/outputIn.../output
}
public class ScheduledUpdater {
//...省略其他属性和方法..
private Config config;
public ScheduleUpdater(Config config, long initialDelayInSeconds, long periodInSeconds) {
this.config = config;
//...
}
//...
}
public class SimpleHttpServer {
private String host;
private int port;
private Map<String, List<Config>> viewers = new HashMap<>();
public SimpleHttpServer(String host, int port) {//...}
public void addViewer(String urlDirectory, Config config) {
if (!viewers.containsKey(urlDirectory)) {
viewers.put(urlDirectory, new ArrayList<Config>());
}
viewers.get(urlDirectory).add(config);
}
public void run() { //... }
}

这样的设计思路也是能工作的,但是对比前后两个设计思路,在同样的代码量、实现复杂度、同等可读性的情况下,第一种设计思路显然要比第二种好很多。为什么这么说呢?主要有两点原因。

**首先,第一种设计思路更加灵活、易扩展、易复用。**因为Updater、Viewer职责更加单一,单一就意味了通用、复用性好。比如,我们现在又有一个新的需求,开发一个Metrics性能统计模块,并且希望将Metrics也通过SimpleHttpServer显示在网页上,以方便查看。这个时候,尽管Metrics跟RedisConfig等没有任何关系,但我们仍然可以让Metrics类实现非常通用的Viewer接口,复用SimpleHttpServer的代码实现。具体的代码如下所示:

public class ApiMetrics implements Viewer {//...}
public class DbMetrics implements Viewer {//...}
public class Application {
ConfigSource configSource = new ZookeeperConfigSource();
public static final RedisConfig redisConfig = new RedisConfig(configSource);
public static final KafkaConfig kafkaConfig = new KakfaConfig(configSource);
public static final MySqlConfig mySqlConfig = new MySqlConfig(configSource);
public static final ApiMetrics apiMetrics = new ApiMetrics();
public static final DbMetrics dbMetrics = new DbMetrics();
public static void main(String[] args) {
SimpleHttpServer simpleHttpServer = new SimpleHttpServer(“127.0.0.1”, 2389);
simpleHttpServer.addViewer("/config", redisConfig);
simpleHttpServer.addViewer("/config", mySqlConfig);
simpleHttpServer.addViewer("/metrics", apiMetrics);
simpleHttpServer.addViewer("/metrics", dbMetrics);
simpleHttpServer.run();
}
}

**其次,第二种设计思路在代码实现上做了一些无用功。**因为Config接口中包含两类不相关的接口,一类是update(),一类是output()和outputInPlainText()。理论上,KafkaConfig只需要实现update()接口,并不需要实现output()相关的接口。同理,MysqlConfig只需要实现output()相关接口,并需要实现update()接口。但第二种设计思路要求RedisConfig、KafkaConfig、MySqlConfig必须同时实现Config的所有接口函数(update、output、outputInPlainText)。除此之外,如果我们要往Config中继续添加一个新的接口,那所有的实现类都要改动。相反,如果我们的接口粒度比较小,那涉及改动的类就比较少。

重点回顾

今天的内容到此就讲完了。我们一块来总结回顾一下,你需要掌握的重点内容。

1.如何理解“接口隔离原则”?

理解“接口隔离原则”的重点是理解其中的“接口”二字。这里有三种不同的理解。

如果把“接口”理解为一组接口集合,可以是某个微服务的接口,也可以是某个类库的接口等。如果部分接口只被部分调用者使用,我们就需要将这部分接口隔离出来,单独给这部分调用者使用,而不强迫其他调用者也依赖这部分不会被用到的接口。

如果把“接口”理解为单个API接口或函数,部分调用者只需要函数中的部分功能,那我们就需要把函数拆分成粒度更细的多个函数,让调用者只依赖它需要的那个细粒度函数。

如果把“接口”理解为OOP中的接口,也可以理解为面向对象编程语言中的接口语法。那接口的设计要尽量单一,不要让接口的实现类和调用者,依赖不需要的接口函数。

2.接口隔离原则与单一职责原则的区别

单一职责原则针对的是模块、类、接口的设计。接口隔离原则相对于单一职责原则,一方面更侧重于接口的设计,另一方面它的思考角度也是不同的。接口隔离原则提供了一种判断接口的职责是否单一的标准:通过调用者如何使用接口来间接地判定。如果调用者只使用部分接口或接口的部分功能,那接口的设计就不够职责单一。

课堂讨论

今天课堂讨论的话题是这样的:

java.util.concurrent并发包提供了AtomicInteger这样一个原子类,其中有一个函数getAndIncrement()是这样定义的:给整数增加一,并且返回未増之前的值。我的问题是,这个函数的设计是否符合单一职责原则和接口隔离原则?为什么?

/**
* Atomically increments by one the current value.
* @return the previous value
*/
public final int getAndIncrement() {//...}

欢迎在留言区写下你的答案,和同学一起交流和分享。如果有收获,也欢迎你把这篇文章分享给你的朋友。