我在上一讲对比和分析了synchronized和ReentrantLock,算是专栏进入并发编程阶段的热身,相信你已经对线程安全,以及如何使用基本的同步机制有了基础,今天我们将深入了解synchronize底层机制,分析其他锁实现和应用场景。
今天我要问你的问题是 ,synchronized底层如何实现?什么是锁的升级、降级?
在回答这个问题前,先简单复习一下上一讲的知识点。synchronized代码块是由一对儿monitorenter/monitorexit指令实现的,Monitor对象是同步的基本实现单元。
在Java 6之前,Monitor的实现完全是依靠操作系统内部的互斥锁,因为需要进行用户态到内核态的切换,所以同步操作是一个无差别的重量级操作。
现代的(Oracle)JDK中,JVM对此进行了大刀阔斧地改进,提供了三种不同的Monitor实现,也就是常说的三种不同的锁:偏斜锁(Biased Locking)、轻量级锁和重量级锁,大大改进了其性能。
所谓锁的升级、降级,就是JVM优化synchronized运行的机制,当JVM检测到不同的竞争状况时,会自动切换到适合的锁实现,这种切换就是锁的升级、降级。
当没有竞争出现时,默认会使用偏斜锁。JVM会利用CAS操作(compare and swap),在对象头上的Mark Word部分设置线程ID,以表示这个对象偏向于当前线程,所以并不涉及真正的互斥锁。这样做的假设是基于在很多应用场景中,大部分对象生命周期中最多会被一个线程锁定,使用偏斜锁可以降低无竞争开销。
如果有另外的线程试图锁定某个已经被偏斜过的对象,JVM就需要撤销(revoke)偏斜锁,并切换到轻量级锁实现。轻量级锁依赖CAS操作Mark Word来试图获取锁,如果重试成功,就使用普通的轻量级锁;否则,进一步升级为重量级锁。
我注意到有的观点认为Java不会进行锁降级。实际上据我所知,锁降级确实是会发生的,当JVM进入安全点(SafePoint)的时候,会检查是否有闲置的Monitor,然后试图进行降级。
今天的问题主要是考察你对Java内置锁实现的掌握,也是并发的经典题目。我在前面给出的典型回答,涵盖了一些基本概念。如果基础不牢,有些概念理解起来就比较晦涩,我建议还是尽量理解和掌握,即使有不懂的也不用担心,在后续学习中还会逐步加深认识。
我个人认为,能够基础性地理解这些概念和机制,其实对于大多数并发编程已经足够了,毕竟大部分工程师未必会进行更底层、更基础的研发,很多时候解决的是知道与否,真正的提高还要靠实践踩坑。
后面我会进一步分析:
从源码层面,稍微展开一些synchronized的底层实现,并补充一些上面答案中欠缺的细节,有同学反馈这部分容易被问到。如果你对Java底层源码有兴趣,但还没有找到入手点,这里可以成为一个切入点。
理解并发包中java.util.concurrent.lock提供的其他锁实现,毕竟Java可不是只有ReentrantLock一种显式的锁类型,我会结合代码分析其使用。
我在上一讲提到过synchronized是JVM内部的Intrinsic Lock,所以偏斜锁、轻量级锁、重量级锁的代码实现,并不在核心类库部分,而是在JVM的代码中。
Java代码运行可能是解释模式也可能是编译模式(如果不记得,请复习专栏第1讲),所以对应的同步逻辑实现,也会分散在不同模块下,比如,解释器版本就是:
src/hotspot/share/interpreter/interpreterRuntime.cpp
为了简化便于理解,我这里会专注于通用的基类实现:
另外请注意,链接指向的是最新JDK代码库,所以可能某些实现与历史版本有所不同。
首先,synchronized的行为是JVM runtime的一部分,所以我们需要先找到Runtime相关的功能实现。通过在代码中查询类似“monitor_enter”或“Monitor Enter”,很直观的就可以定位到:
sharedRuntime.cpp/hpp,它是解释器和编译器运行时的基类。
synchronizer.cpp/hpp,JVM同步相关的各种基础逻辑。
在sharedRuntime.cpp中,下面代码体现了synchronized的主要逻辑。
Handle h_obj(THREAD, obj);if (UseBiasedLocking) {// Retry fast entry if bias is revoked to avoid unnecessary inflationObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);} else {ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);}
其实现可以简单进行分解:
偏斜锁并不适合所有应用场景,撤销操作(revoke)是比较重的行为,只有当存在较多不会真正竞争的synchronized块儿时,才能体现出明显改善。实践中对于偏斜锁的一直是有争议的,有人甚至认为,当你需要大量使用并发类库时,往往意味着你不需要偏斜锁。从具体选择来看,我还是建议需要在实践中进行测试,根据结果再决定是否使用。
还有一方面是,偏斜锁会延缓JIT 预热的进程,所以很多性能测试中会显式地关闭偏斜锁,命令如下:
-XX:-UseBiasedLocking
那么fast_enter是如何实现的呢?同样是通过在代码库搜索,我们可以定位到synchronizer.cpp。 类似fast_enter这种实现,解释器或者动态编译器,都是拷贝这段基础逻辑,所以如果我们修改这部分逻辑,要保证一致性。这部分代码是非常敏感的,微小的问题都可能导致死锁或者正确性问题。
void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock,bool attempt_rebias, TRAPS) {if (UseBiasedLocking) {if (!SafepointSynchronize::is_at_safepoint()) {BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {return;}} else {assert(!attempt_rebias, "can not rebias toward VM thread");BiasedLocking::revoke_at_safepoint(obj);}assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");}slow_enter(obj, lock, THREAD);}
我来分析下这段逻辑实现:
biasedLocking定义了偏斜锁相关操作,revoke_and_rebias是获取偏斜锁的入口方法,revoke_at_safepoint则定义了当检测到安全点时的处理逻辑。
如果获取偏斜锁失败,则进入slow_enter。
这个方法里面同样检查是否开启了偏斜锁,但是从代码路径来看,其实如果关闭了偏斜锁,是不会进入这个方法的,所以算是个额外的保障性检查吧。
另外,如果你仔细查看synchronizer.cpp里,会发现不仅仅是synchronized的逻辑,包括从本地代码,也就是JNI,触发的Monitor动作,全都可以在里面找到(jni_enter/jni_exit)。
关于biasedLocking的更多细节我就不展开了,明白它是通过CAS设置Mark Word就完全够用了,对象头中Mark Word的结构,可以参考下图:
顺着锁升降级的过程分析下去,偏斜锁到轻量级锁的过程是如何实现的呢?
我们来看看slow_enter到底做了什么。
void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {markOop mark = obj->mark();if (mark->is_neutral()) {// 将目前的Mark Word复制到Displaced Header上lock->set_displaced_header(mark);// 利用CAS设置对象的Mark Wordif (mark == obj()->cas_set_mark((markOop) lock, mark)) {TEVENT(slow_enter: release stacklock);return;}// 检查存在竞争} else if (mark->has_locker() &&THREAD->is_lock_owned((address)mark->locker())) {// 清除lock->set_displaced_header(NULL);return;}// 重置Displaced Headerlock->set_displaced_header(markOopDesc::unused_mark());ObjectSynchronizer::inflate(THREAD,obj(),inflate_cause_monitor_enter)->enter(THREAD);}
请结合我在代码中添加的注释,来理解如何从试图获取轻量级锁,逐步进入锁膨胀的过程。你可以发现这个处理逻辑,和我在这一讲最初介绍的过程是十分吻合的。
设置Displaced Header,然后利用cas_set_mark设置对象Mark Word,如果成功就成功获取轻量级锁。
否则Displaced Header,然后进入锁膨胀阶段,具体实现在inflate方法中。
今天就不介绍膨胀的细节了,我这里提供了源代码分析的思路和样例,考虑到应用实践,再进一步增加源代码解读意义不大,有兴趣的同学可以参考我提供的synchronizer.cpp链接,例如:
deflate_idle_monitors是分析锁降级逻辑的入口,这部分行为还在进行持续改进,因为其逻辑是在安全点内运行,处理不当可能拖长JVM停顿(STW,stop-the-world)的时间。
fast_exit或者slow_exit是对应的锁释放逻辑。
前面分析了synchronized的底层实现,理解起来有一定难度,下面我们来看一些相对轻松的内容。 我在上一讲对比了synchronized和ReentrantLock,Java核心类库中还有其他一些特别的锁类型,具体请参考下面的图。
你可能注意到了,这些锁竟然不都是实现了Lock接口,ReadWriteLock是一个单独的接口,它通常是代表了一对儿锁,分别对应只读和写操作,标准类库中提供了再入版本的读写锁实现(ReentrantReadWriteLock),对应的语义和ReentrantLock比较相似。
StampedLock竟然也是个单独的类型,从类图结构可以看出它是不支持再入性的语义的,也就是它不是以持有锁的线程为单位。
为什么我们需要读写锁(ReadWriteLock)等其他锁呢?
这是因为,虽然ReentrantLock和synchronized简单实用,但是行为上有一定局限性,通俗点说就是“太霸道”,要么不占,要么独占。实际应用场景中,有的时候不需要大量竞争的写操作,而是以并发读取为主,如何进一步优化并发操作的粒度呢?
Java并发包提供的读写锁等扩展了锁的能力,它所基于的原理是多个读操作是不需要互斥的,因为读操作并不会更改数据,所以不存在互相干扰。而写操作则会导致并发一致性的问题,所以写线程之间、读写线程之间,需要精心设计的互斥逻辑。
下面是一个基于读写锁实现的数据结构,当数据量较大,并发读多、并发写少的时候,能够比纯同步版本凸显出优势。
public class RWSample {private final Map<String, String> m = new TreeMap<>();private final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();private final Lock r = rwl.readLock();private final Lock w = rwl.writeLock();public String get(String key) {r.lock();System.out.println("读锁锁定!");try {return m.get(key);} finally {r.unlock();}}public String put(String key, String entry) {w.lock();System.out.println("写锁锁定!");try {return m.put(key, entry);} finally {w.unlock();}}// …}
在运行过程中,如果读锁试图锁定时,写锁是被某个线程持有,读锁将无法获得,而只好等待对方操作结束,这样就可以自动保证不会读取到有争议的数据。
读写锁看起来比synchronized的粒度似乎细一些,但在实际应用中,其表现也并不尽如人意,主要还是因为相对比较大的开销。
所以,JDK在后期引入了StampedLock,在提供类似读写锁的同时,还支持优化读模式。优化读基于假设,大多数情况下读操作并不会和写操作冲突,其逻辑是先试着读,然后通过validate方法确认是否进入了写模式,如果没有进入,就成功避免了开销;如果进入,则尝试获取读锁。请参考我下面的样例代码。
public class StampedSample {private final StampedLock sl = new StampedLock();void mutate() {long stamp = sl.writeLock();try {write();} finally {sl.unlockWrite(stamp);}}Data access() {long stamp = sl.tryOptimisticRead();Data data = read();if (!sl.validate(stamp)) {stamp = sl.readLock();try {data = read();} finally {sl.unlockRead(stamp);}}return data;}// …}
注意,这里的writeLock和unLockWrite一定要保证成对调用。
你可能很好奇这些显式锁的实现机制,Java并发包内的各种同步工具,不仅仅是各种Lock,其他的如Semaphore、CountDownLatch,甚至是早期的FutureTask等,都是基于一种AQS框架。
今天,我全面分析了synchronized相关实现和内部运行机制,简单介绍了并发包中提供的其他显式锁,并结合样例代码介绍了其使用方法,希望对你有所帮助。
关于今天我们讨论的你做到心中有数了吗?思考一个问题,你知道“自旋锁”是做什么的吗?它的使用场景是什么?
请你在留言区写写你对这个问题的思考,我会选出经过认真思考的留言,送给你一份学习奖励礼券,欢迎你与我一起讨论。
你的朋友是不是也在准备面试呢?你可以“请朋友读”,把今天的题目分享给好友,或许你能帮到他。